In this problem, P is the transition matrix for an irreducible Markov process with period d. We are asked to find the number of communicating classes and periods for P^{k}.

First note the following
Lemma 0.1. Let $d=H C F\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where the a_{i} are positive integers. Write

$$
d=b_{1} a_{1}+\cdots b_{n} a_{n}
$$

for $b_{i} \in \mathbb{Z}$. Put $B=\sup _{i}\left\{\left|b_{i}\right|\right\}$ and let $A=\sum_{i} a_{i}$. Then for all $m>A^{2} B$, we can write

$$
m d=c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}
$$

with $c_{i} \in \mathbb{Z}, c_{i} \geq 0$.
Proof. Suppose $m>A^{2} B / d$. Write

$$
m=q A+r
$$

with $q \geq A B / d$ and $0 \leq r<A$. Then

$$
m d=q A d+r d=q d\left(\sum_{i} a_{i}\right)+r \sum_{i} b_{i} a_{i}=\sum_{i}\left(q d+r b_{i}\right) a_{i}
$$

But $q d \geq A B \geq r\left|b_{i}\right|$ for each i. Hence, $c_{i}:=q d+r b_{i} \geq 0$ for each i.
Let I be the state space for the Markov process. Recall that the period is the same for all $x \in$ and it is by definition

$$
d=H C F\left\{a \mid p_{x x}^{(a)}>0\right\}
$$

As we go over an increasing sequence of finite subsets of elements in $\left\{a \mid p_{x x}^{(a)}>0\right\}$, the HCF of these subsets get smaller and smaller. Hence, d is actually the $H C F$ of a finite set of a_{i} in the set. Thus, with notation as in the lemma, for $m>A^{2} B / d$,

$$
p_{x x}^{(m d)} \geq\left(p^{\left(a_{1}\right)}\right)^{c_{1}}\left(p^{\left(a_{2}\right)}\right)^{c_{2}} \cdots\left(p^{\left(a_{n}\right)}\right)^{c_{n}}>0
$$

For $n \in \mathbb{Z}$, denote by $[n]$ its class in \mathbb{Z} / d. For $r \in \mathbb{Z} / d$, we denote by r^{\prime} an element of \mathbb{Z} such that $\left[r^{\prime}\right]=r$. For $x \in I$ and $r \in \mathbb{Z} / d$, let

$$
I_{r}(x)=\left\{y \in I \mid \exists n, p_{x y}^{(n)}>0, n \equiv r \bmod d\right\}
$$

From the definition, it's clear that if $y \in I_{r}(x)$ and $z \in I_{s}(y)$, then $z \in I_{r+s}(x)$.
Proposition 0.2. Suppose $y \in I_{r}(x)$. Then $x \in I_{-r}(y)$.
Proof. We have $p_{y x}^{(m)}>0$ for some m by irreducibility. Thus, for some n such that $[n]=r$, we have $p_{x x}^{(n+m)}>0$. But then, $d \mid(n+m)$, and hence, $[m]=-r$.
Proposition 0.3. If $y, z \in I_{r}(x)$, then $z \in I_{0}(y)$.
Proof. Since $x \in I_{-r}(y)$ and $z \in I_{r}(x)$, we have $z \in I_{-r+r}(y)=I_{0}(y)$.
Proposition 0.4. For $r \neq s \in \mathbb{Z} / d, I_{r}(x) \cap I_{s}(x)=\phi$.
Proof. Let $y \in I_{r}(x) \cap I_{s}(x)$. Then $x \in I_{-s}(y)$. So $x \in I_{r-s}(x)$. Thus for some $n \in \mathbb{Z}$ such that $[n]=r-s$, we have $p_{x x}^{(n)}>0$. But then, $d \mid n$. So $r-s=0$.

By irreducibility, $I=\cup_{r} I_{r}(x)$, and we have just shown this is a disjoint union.

Proposition 0.5. Let $y \in I_{r}(x)$. The for all m sufficiently large such that $m \equiv r \bmod d$, we have

$$
p_{x y}^{(m)}>0
$$

Proof. We have $p_{x y}^{(n)}>0$ for some $n \equiv r \bmod d$. Let $m \equiv r \bmod d$ satisfy $m>A^{2} B+n$ with notation as in the previous lemma. Then $(m-n) / d>A^{2} B / d$. Hence, $p_{x x}^{(m-n)}>0$ and

$$
p_{x y}^{(m)} \geq p_{x x}^{(m-n)} p_{x y}^{(n)}>0 .
$$

In particular, if $y \in I_{0}(x)$, then $p_{x y}^{(n)}>0$ for all $n \in d \mathbb{Z}$, sufficiently large. This implies that $p_{x y}^{(k n)}>0$ for $n \in d \mathbb{Z}$ sufficiently large. So all $I_{0}(x)$ are all in the same communicating class for P^{k}. Similarly, since $I_{j}(x)=I_{0}(y)$ for any $y \in I_{j}(x)$, we see that all of $I_{j}(x)$ is in the same communicating class for any j.

Let $g=H C F\{k, d\}$.
Proposition 0.6. $I_{r}(x)$ and $I_{s}(x)$ are in the same communicating class for P^{k} if and only if $r \equiv s$ $\bmod g$.

Proof. Suppose they are in the same communicating class. Then there are $y \in I_{r}(x)$ and $z \in I_{s}(x)$ such that $p_{y z}^{(m k)}>0$ for some m. So then $z \in I_{[m k]}(y)$, and hence, $z \in I_{r+[m k]}(x)$. This implies that $r+[m k]=s$. Hence, $r^{\prime}-s^{\prime}=-m k+a d$ for some a, and hence, $r \equiv s \bmod g$.

Conversely, suppose $r \equiv s \bmod g$ and let $y \in I_{r}(x), z \in I_{s}(x)$. Then

$$
r^{\prime}=s^{\prime}+a g
$$

for some a. Thus, we have $y \in I_{[a g]}(z)$. We can write $a g=l d+n k$. So $y \in I_{[n k]}(z)$. Hence, for all m sufficiently large such that $m \equiv n k \bmod d$, we have $p_{z y}^{(m)}>0$. In particular, we can choose m of the form $m=n k+h d k$ for h large. But then, $p_{z y}^{((n+h d) k)}>0$. We can switch the role of z and y in this argument, which allows us to conclude that z and y are in the same communicating class for P^{k}.

We conclude that there are g communicating classes. Now, I leave it to you to check that the period of P^{k} is d / g.

