
In this problem, P is the transition matrix for an irreducible Markov process with period d. We
are asked to find the number of communicating classes and periods for P k.

First note the following

Lemma 0.1. Let d = HCF{a1, a2, . . . , an}, where the ai are positive integers. Write

d = b1a1 + · · · bnan

for bi ∈ Z. Put B = supi{|bi|} and let A =
∑

i ai. Then for all m > A2B, we can write

md = c1a1 + c2a2 + · · ·+ cnan

with ci ∈ Z, ci ≥ 0.

Proof. Suppose m > A2B/d. Write
m = qA+ r

with q ≥ AB/d and 0 ≤ r < A. Then

md = qAd+ rd = qd(
∑
i

ai) + r
∑
i

biai =
∑
i

(qd+ rbi)ai.

But qd ≥ AB ≥ r|bi| for each i. Hence, ci := qd+ rbi ≥ 0 for each i.

Let I be the state space for the Markov process. Recall that the period is the same for all x ∈
and it is by definition

d = HCF{a | p(a)xx > 0}.

As we go over an increasing sequence of finite subsets of elements in {a | p(a)xx > 0}, the HCF of these
subsets get smaller and smaller. Hence, d is actually the HCF of a finite set of ai in the set. Thus,
with notation as in the lemma, for m > A2B/d,

p(md)
xx ≥ (p(a1))c1(p(a2))c2 · · · (p(an))cn > 0.

For n ∈ Z, denote by [n] its class in Z/d. For r ∈ Z/d, we denote by r′ an element of Z such that
[r′] = r. For x ∈ I and r ∈ Z/d, let

Ir(x) = {y ∈ I | ∃n, p(n)xy > 0, n ≡ r mod d}.

From the definition, it’s clear that if y ∈ Ir(x) and z ∈ Is(y), then z ∈ Ir+s(x).

Proposition 0.2. Suppose y ∈ Ir(x). Then x ∈ I−r(y).

Proof. We have p(m)
yx > 0 for some m by irreducibility. Thus, for some n such that [n] = r, we have

p
(n+m)
xx > 0. But then, d|(n+m), and hence, [m] = −r.

Proposition 0.3. If y, z ∈ Ir(x), then z ∈ I0(y).

Proof. Since x ∈ I−r(y) and z ∈ Ir(x), we have z ∈ I−r+r(y) = I0(y).

Proposition 0.4. For r 6= s ∈ Z/d, Ir(x) ∩ Is(x) = φ.

Proof. Let y ∈ Ir(x) ∩ Is(x). Then x ∈ I−s(y). So x ∈ Ir−s(x). Thus for some n ∈ Z such that
[n] = r − s, we have p(n)xx > 0. But then, d|n. So r − s = 0.

By irreducibility, I = ∪rIr(x), and we have just shown this is a disjoint union.
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Proposition 0.5. Let y ∈ Ir(x). The for all m sufficiently large such that m ≡ r mod d, we have

p(m)
xy > 0.

Proof. We have p(n)xy > 0 for some n ≡ r mod d. Let m ≡ r mod d satisfy m > A2B + n with
notation as in the previous lemma. Then (m− n)/d > A2B/d. Hence, p(m−n)xx > 0 and

p(m)
xy ≥ p(m−n)xx p(n)xy > 0.

In particular, if y ∈ I0(x), then p
(n)
xy > 0 for all n ∈ dZ, sufficiently large. This implies that

p
(kn)
xy > 0 for n ∈ dZ sufficiently large. So all I0(x) are all in the same communicating class for P k.

Similarly, since Ij(x) = I0(y) for any y ∈ Ij(x), we see that all of Ij(x) is in the same communicating
class for any j.

Let g = HCF{k, d}.

Proposition 0.6. Ir(x) and Is(x) are in the same communicating class for P k if and only if r ≡ s
mod g.

Proof. Suppose they are in the same communicating class. Then there are y ∈ Ir(x) and z ∈ Is(x)
such that p(mk)

yz > 0 for some m. So then z ∈ I[mk](y), and hence, z ∈ Ir+[mk](x). This implies that
r + [mk] = s. Hence, r′ − s′ = −mk + ad for some a, and hence, r ≡ s mod g.

Conversely, suppose r ≡ s mod g and let y ∈ Ir(x), z ∈ Is(x). Then

r′ = s′ + ag

for some a. Thus, we have y ∈ I[ag](z). We can write ag = ld+ nk. So y ∈ I[nk](z). Hence, for all m
sufficiently large such that m ≡ nk mod d, we have p(m)

zy > 0. In particular, we can choose m of the
form m = nk + hdk for h large. But then, p((n+hd)k)

zy > 0. We can switch the role of z and y in this
argument, which allows us to conclude that z and y are in the same communicating class for P k.

We conclude that there are g communicating classes. Now, I leave it to you to check that the
period of P k is d/g.
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