Probability, sheet 4

There was some mystery today about convergence in problem number 10, which I will try to resolve here.

We are asked to prove the identity

$$
\frac{\sin t}{t}=\prod_{n=1}^{\infty} \cos \left(t / 2^{n}\right)
$$

by comparing characteristic functions of random variables. Let X be uniformly distributed on $[-1,1]$. Then its characteristic function is

$$
(1 / 2) \int_{-1}^{1} e^{i t x} d x=\left[e^{i t}-e^{-i t}\right] /(2 i t)=\sin (t) / t
$$

Now let Y_{n} be the distribution that takes values 1 and -1 each with probability $1 / 2$. Then $2^{-n} Y_{n}$ takes the values 2^{-n} and -2^{-n} with probability $1 / 2$. So the characteristic function of

$$
Z=\sum_{n=1}^{N} 2^{-n} Y_{n}
$$

is

$$
\begin{gathered}
\prod_{n=1}^{N} E\left(e^{i t 2^{-n} Y_{n}}\right) \\
=\prod_{n=1}^{N}\left((1 / 2) e^{i t / 2^{n}}+(1 / 2) e^{-i t / 2^{n}}\right) \\
=\prod_{n=1}^{N} \cos \left(t / 2^{n}\right)
\end{gathered}
$$

The variable Z will run through 2^{-N} values each with probability 2^{-N}. So a direct calculation of the characteristic function will give

$$
S_{N}=2^{-N} \sum_{z} e^{i t z}
$$

where the sum runs over the values of Z. Now here is the key point, which I will leave to you to verify:
S_{N} is a Riemann sum for the integral

$$
\int_{-1}^{1} e^{i t x} d x
$$

Thus, as $N \rightarrow \infty, S_{N}$ will converge to the integral, which we have already calculated to be $\sin (t) / t$. This gives the desired identity.

