Orthogonal bases

Let F be a field of characteristic different from 2 , for example, \mathbb{Q} or \mathbb{R} or \mathbb{C}. Let $<\cdot, \cdot>$ be a symmetric bilinear form on a finite-dimensional vector space V. There is thee question of finding an orthogonal basis for V with respect to the bilinear form. [Note that we are not necessarily searching for an orthonormal basis.]

Lemma 0.1. If $<\cdot, \cdot>$ is not the zero form, then there is a vector v such that $<v, v>\neq 0$.
Proof. Let v and w be vectors such that $<v, w>\neq 0$. If $<v, v>\neq 0$ or $<w, w>\neq 0$, then we are done. If they are both zero, then we see that

$$
<v+w, v+w>=2<v, w>\neq 0
$$

One finds an orthogonal basis by induction on the dimension. If $<\cdot, \cdot>$ is the zero form, we are done: any basis is orthogonal. If not, let b_{1} be such that $<b_{1}, b_{1}>\neq 0$. Then we see easily that

$$
V=\left[b_{1}\right] \oplus\left[b_{1}\right]^{\perp}
$$

where $\left[b_{1}\right]$ refers to the subspace generated by b_{1}. Since $\operatorname{dim}\left[b_{1}\right]^{\perp}<\operatorname{dim} V$, we can apply induction.
Let's see how this works in practice for problem 5 in sheet 4 . There, V is the vector space of 2×2 real matrices, and

$$
<A, B>=\operatorname{Tr}(A B)
$$

We start with the standard basis

$$
\begin{aligned}
& c_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad c_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
& c_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad c_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

We can take $b_{1}=c_{1}$, since $<b_{1}, b_{1}>=1$. Now, one checks easily that each of c_{1}, c_{3}, c_{4} are orthogonal to b_{1}, so that

$$
\left[b_{1}\right]^{\perp}=\left[c_{2}, c_{3}, c_{4}\right] .
$$

We see quickly that the form restricted to $\left[c_{2}, c_{3}, c_{4}\right]$ is non-zero. At this point, we shouldn't choose c_{2} to be the second basis vector, since $<c_{2}, c_{2}>=0$. However, $<c_{4}, c_{4}>=1 \neq 0$. So we let $b_{2}=c_{4}$. Now we could have computed $\left[b_{2}\right]^{\perp}$ inside $\left[c_{2}, c_{3}, c_{4}\right]$ by using the Gram-Schimdt process, but this would only have revealed that c_{2} and c_{3} are already both orthogonal to $b_{2}=c_{4}$. Thus,
$\left[b_{2}\right]^{\perp}=\left[c_{2}, c_{3}\right]$. Now, $<c_{2}, c_{2}>=<c_{3}, c_{3}>=0$, but $<c_{2}, c_{3}>=1$. Thus, we can take $b_{3}=c_{2}+c_{3}$. Finally, one easily checks that $b_{4}=c_{2}-c_{3}$ is orthogonal to b_{3}. (Once again, we could have used Gram-Schmidt to come up with the orthogonal vector.)

