
Orthogonal bases

Let F be a field of characteristic different from 2, for example, Q or R or C. Let < ·, · > be a
symmetric bilinear form on a finite-dimensional vector space V . There is thee question of finding an
orthogonal basis for V with respect to the bilinear form. [Note that we are not necessarily searching
for an orthonormal basis.]

Lemma 0.1. If < ·, · > is not the zero form, then there is a vector v such that < v, v >6= 0.

Proof. Let v and w be vectors such that < v,w >6= 0. If < v, v >6= 0 or < w,w > 6= 0, then we are
done. If they are both zero, then we see that

< v + w, v + w >= 2 < v,w >6= 0.

One finds an orthogonal basis by induction on the dimension. If < ·, · > is the zero form, we are
done: any basis is orthogonal. If not, let b1 be such that < b1, b1 > 6= 0. Then we see easily that

V = [b1]⊕ [b1]
⊥,

where [b1] refers to the subspace generated by b1. Since dim[b1]
⊥ < dimV , we can apply induction.

Let’s see how this works in practice for problem 5 in sheet 4. There, V is the vector space of 2× 2
real matrices, and

< A,B >= Tr(AB).

We start with the standard basis

c1 =

(
1 0
0 0

)
, c2 =

(
0 1
0 0

)
,

c3 =

(
0 0
1 0

)
, c4 =

(
0 0
0 1

)
.

We can take b1 = c1, since < b1, b1 >= 1. Now, one checks easily that each of c1, c3, c4 are orthogonal
to b1, so that

[b1]
⊥ = [c2, c3, c4].

We see quickly that the form restricted to [c2, c3, c4] is non-zero. At this point, we shouldn’t choose
c2 to be the second basis vector, since < c2, c2 >= 0. However, < c4, c4 >= 1 6= 0. So we let b2 = c4.
Now we could have computed [b2]

⊥ inside [c2, c3, c4] by using the Gram-Schimdt process, but this
would only have revealed that c2 and c3 are already both orthogonal to b2 = c4. Thus,
[b2]

⊥ = [c2, c3]. Now, < c2, c2 >=< c3, c3 >= 0, but < c2, c3 >= 1. Thus, we can take b3 = c2 + c3.
Finally, one easily checks that b4 = c2 − c3 is orthogonal to b3. (Once again, we could have used
Gram-Schmidt to come up with the orthogonal vector.)
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