Orthogonal bases

Let F be a field of characteristic different from 2, for example, \mathbb{Q} or \mathbb{R} or \mathbb{C} . Let $\langle \cdot, \cdot \rangle$ be a symmetric bilinear form on a finite-dimensional vector space V. There is the question of finding an orthogonal basis for V with respect to the bilinear form. [Note that we are not necessarily searching for an *orthonormal* basis.]

Lemma 0.1. If $\langle \cdot, \cdot \rangle$ is not the zero form, then there is a vector v such that $\langle v, v \rangle \neq 0$.

Proof. Let v and w be vectors such that $\langle v, w \rangle \neq 0$. If $\langle v, v \rangle \neq 0$ or $\langle w, w \rangle \neq 0$, then we are done. If they are both zero, then we see that

$$< v + w, v + w >= 2 < v, w > \neq 0.$$

One finds an orthogonal basis by induction on the dimension. If $\langle \cdot, \cdot \rangle$ is the zero form, we are done: any basis is orthogonal. If not, let b_1 be such that $\langle b_1, b_1 \rangle \neq 0$. Then we see easily that

$$V = [b_1] \oplus [b_1]^{\perp},$$

where $[b_1]$ refers to the subspace generated by b_1 . Since $\dim[b_1]^{\perp} < \dim V$, we can apply induction.

Let's see how this works in practice for problem 5 in sheet 4. There, V is the vector space of 2×2 real matrices, and

$$\langle A, B \rangle = Tr(AB).$$

We start with the standard basis

$$c_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad c_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$
$$c_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad c_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

We can take $b_1 = c_1$, since $\langle b_1, b_1 \rangle = 1$. Now, one checks easily that each of c_1, c_3, c_4 are orthogonal to b_1 , so that

$$[b_1]^{\perp} = [c_2, c_3, c_4].$$

We see quickly that the form restricted to $[c_2, c_3, c_4]$ is non-zero. At this point, we shouldn't choose c_2 to be the second basis vector, since $\langle c_2, c_2 \rangle = 0$. However, $\langle c_4, c_4 \rangle = 1 \neq 0$. So we let $b_2 = c_4$. Now we could have computed $[b_2]^{\perp}$ inside $[c_2, c_3, c_4]$ by using the Gram-Schimdt process, but this would only have revealed that c_2 and c_3 are already both orthogonal to $b_2 = c_4$. Thus, $[b_2]^{\perp} = [c_2, c_3]$. Now, $\langle c_2, c_2 \rangle = \langle c_3, c_3 \rangle = 0$, but $\langle c_2, c_3 \rangle = 1$. Thus, we can take $b_3 = c_2 + c_3$. Finally, one easily checks that $b_4 = c_2 - c_3$ is orthogonal to b_3 . (Once again, we could have used Gram-Schmidt to come up with the orthogonal vector.)