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In this note, we will discuss a bit the basic framework that goes into the computation of the
symmetry groups of various objects.
A key fact is:

Any isometry φ of Euclidean n-space Rn can be uniquely written as

φ = Tv ◦A,

where
A : Rn→Rn

is a linear map defined by an orthogonal matrix, and

Tv(x) = x+ v

is the translation map by a vector v.

If you have seen this fact for n = 2 and 3, this is all we will need. It says that the condition that a
map preserve distances is extremely rigid. Two predictable ways of constructing such a map, via
linear orthogonal transformations and translations, exhaust all possibilities. You may have learned
the fact that any orthogonal transformation can be written as a rotation composed with a
reflection1. Thus, any isometry is a rotation, a reflection, a translation, or a composition of these.
As an important consequence, note that if φ(0) = 0, then v = 0, so φ is just an orthogonal linear
transformation. The linearity here is crucial in many applications, as we now explain.
A basic fact is:

If
L,M : V→W

are linear maps between vector spaces and B = {b1, b2, . . . , bn} is a basis for V , then
L(bi) =M(bi) for every i implies that L =M .

This is obvious and elementary, but very important to keep in mind. It is one of the important
reasons to keep track of bases, since a linear transformation is completely by its effect on basis
elements.
To illustrate its utility, let us consider the simple problem where

A : R2→R2

is a linear map with ±1 as eigenvalues, and corresponding eigenvectors v and w which are assumed
to be orthogonal. So Av = v and Aw = −w. We would like to conclude that A is equal to the
reflection rl across the line l spanned by v. How do we legitimately reach this conclusion? Well,

Av = v = rl(v)

and
Aw = −w = rl(w),

and {v, w} is a basis. (Why?) Therefore, rl = A.
1This is easy to see in two dimensions, somewhat harder in three dimensions. Search on the Bloomsbury Journal

website for the entry ‘Isometries in two and three dimensions.’
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Now consider the problem of determining the group GL of isometries that stabilise a line L in the
plane. Let us compute GL rather systematically: Let φ ∈ GL. Choose any O ∈ L, and compute
P = φ(O) ∈ L. Then the vector v pointing from P to O is parallel to L, and hence Tv(L) = L. Thus,

Tv ◦ φ(L) = L,

that is, ψ = Tv ◦ φ is an isometry of the plane that stabilizes L, but furthermore, that sends O to
itself. Hence, taking O as the origin, we can then assume that ψ is an orthogonal matrix stabilising
the line L that goes through the origin. Consider now the possibilities for ψ. Let b be a vector lying
in L. Then ψ(b) still lies in L, but must have the same length as b. Therefore,

ψ(b) = ±b.

Now let c be a vector orthogonal to b. Since ψ preserves lengths and angles, we see that ψ(c) = ±c
as well.
So here are the possibilities.
(1)

ψ(b) = b ;ψ(c) = c.

Then ψ = I.
(2)

ψ(b) = b ;ψ(c) = −c.

Then ψ is the reflection across the line L.
(3)

ψ(b) = −b ;ψ(c) = c.

Then ψ is the reflection across the line L⊥ orthogonal to L that goes through O.
(4)

ψ(b) = −b ;ψ(c) = −c.

Then ψ is the rotation operator through an angle π around O.
In each case, how do we know these are the correct linear maps? This is again because ψ and the
linear maps described have the same effect on the basis {b, c}. To check this efficiently, we made key
use of the fact that the maps under consideration are linear.
To conclude then,

φ = T−v ◦ ψ

is one of these four maps followed by translation by a vector −v parallel to L. That is, such a φ
clearly lies in GL. We have just shown that all elements of GL have this form.
Now we consider the symmetries of the cube. First, let us say clearly what is meant. Let C ⊂ R3 be
a cube. We want to know the group GC of all isometries φ of R3 such that φ(C) = C. It would be
useful to reduce again to the case of orthogonal transformations. To do this, note that φ must take
the centre of the cube to itself. (Why?) Now we can construct a new orthogonal coordinate system
for R3 so that C has its centre at the origin. (You may want to make this part of the argument more
rigorous.) Thus, we can regard the symmetries as being a subgroup of the group of orthogonal
matrices. Next, notice that vectors pointing to any three of the vertices of the cube are linearly
independent. (You should prove for yourself that no three lie on a plane through the origin.) Thus
any element of GC is completely determined by its effect on any three of the vertices. Let us fix one
vertex and label it A, assuming that it lies above the x− y plane, for convenience of reference.
Consider the subgroup H of GC generated by a rotation R by π/2 around the z axis, and the
reflection r across the x− y plane. It is easy to prove that

H = {I,R,R2, R3, r, rR, rR2, rR3}.
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To see this, it suffice to show that H is indeed a subgroup. The containment of the identity and
inverses is rather obvious, so one needs to show that this set is closed under composition of linear
maps. For this, the key thing to check is that

Rr = rR.

(Fill in the other details.) How do we check this? It suffices to show that these two transformations
have the same effect on three of the vertices, which is easy. Next, you should check that H has order
8, that is, that the elements are distinct. It is clear that the Ri are distinct, and therefore, so are the
rRi. (Check the effect on A.) We see that the Ri are distinct from the rRj once again by the effect
on A, since the latter ones will send A to a point below the x− y plane. Meanwhile, H clearly acts
transitively on the 8 vertices, and hence, it acts simply transitively. Therefore, for any vertex v,
there is a unique element h ∈ H such that h(v) = A. Why have we bothered to prove this? The
point is that now, for any φ ∈ GC , there is a unique h such that φ = h ◦ ψ, where ψ ∈ K, the
stabiliser of A in GC . What is this stabiliser? Note that A has three neighbouring vertices on the
cube, say B,C,D. These must be taken to each other by any ψ ∈ K, since the distance to A must
remain the same after application. Therefore, the plane spanned by these three vertices is stabilised
by ψ. So we get a homomorphism

K - T,

where T consists of the isometries of the plane that stabilise the triangle spanned by B,C,D. This
map is injective, because the vectors corresponding to B,C,D in three space are linearly
independent. I hope you have already proved that T is isomorphic to S3, generated by a rotation
through the angle 2π/3 and a reflection. I also leave it to you to prove that K also surjects onto T ,
simply by constructing the rotation (around a long diagonal going through A) and the reflection
(across a the plane that contains this long diagonal and the point B) of three space that maps to the
generators of T . (You should convince yourself that both of these lie in K). Therefore,

K ' T,

and K is also generated exactly by this rotation and reflection. So now, we have described
completely the stabiliser K, and we know that any element of GC can be uniquely written as a
product of an element of H and an element of K. In particular, |GC | = 48.
I encourage you now to work out the symmetries of the prism in the same spirit.
A small word of warning: You will note that the proof given above also could be made more precise,
for example, regarding the coordinate systems and verification of the effect of some transformations
on vertices. I made also some appeal to visual arguments. Now, it is true that to write down all
possible details in a discussion like this can get pretty tedious. In an exam, on the other hand, your
goal is to put in just the right amount of detail to display a balanced understanding of the material.
Such a balanced understanding includes a good awareness of what details would need to be added,
were a skeptical reader to ask for them.
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