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5. This problem can be solved in a straightforward manner using the change of variable formula. I
will focus on the specific case where both X and Y follow the standard normal distribution N(0, 1).
Then the joint density is

fX,Y (x, y) = (1/2π)e−(x
2+y2)/2.

Instead of thinking about Z = Y/X on its own, we compute the joint density of X and Y/X. This
corresponds to the map

T (x, y) = (x, y/x),

which is bijective from R2 \ {x = 0} to R2 \ {x = 0}, and whose inverse map is

S(x, z) = (x, xz).

We have
DS(x, z) =

(
1 0
z x

)
,

so that
|detDS(x, z)| = |x|.

Hence, the joint density of X and Z is

|x|fX,Y (S(x, z)) = (1/2π)|x|e−x
2(1+z2)/2

while the marginal density of Z is

(1/2π)

∫ ∞
−∞
|x|e−x

2(1+z2)/2dx

(1/π)

∫ ∞
0

xe−x
2(1+z2)/2dx

= −(1/π(1 + z2))e−x
2(1+z2)/2|∞0 =

1

π(1 + z2)
.

Let us make a few observations. The variable Z is just the slope of the line from the origin to
(X,Y ). So as to avoid at first the consideration of sign as well as the singularity of Z on the y-axis,
we consider the density just on the half-plane to the right of the y-axis. Let us calculate the
probability that the slope will lie between a and b:

(1/π)

∫ b

a

1/(1 + z2)dz = (1/π)[arctan(b)− arctan(a)].

This is just the angle between the lines La and Lb that go through the origin with slopes a and b.
This makes sense. The joint density is (1/2π)e−r

2/2, which is symmetric around the origin. For the
slope to lie between a and b, the point (X,Y ) should lie in the wedge between La and Lb. Because of
the circular symmetry, this should clearly be proportional to the angle between them. During my
meeting with Macek and David, I think I remarked that the formula for the density indicates that
large slopes are less likely than small slopes, and I found this curious. From the perspective of
angles, this is rather obvious. The more precise statement is this: If you take an interval [z, z + ε]
and compare the probability that the slope falls in there for small z and large z (note that the
lengths of the interval is always the same), then the latter is less likely. This is because an ε interval
of slope corresponds to a smaller change in angle the large z becomes. Perhaps it’s easier to think of
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this the other way around. A small change in angle corresponds to a large change in slope when you
are in the large slope region.

Let us try a direct calculation of the density: compute the cumulative distribution function of Z and
take the derivative. The region in the plane corresponding to

P [Z = Y/X ≤ t]

is the region lying below the line y = tx. Thus, we must integrate fX,Y (x, y) on this region to find
the cdf.

F (t) =

∫ ∞
−∞

∫ tx

−∞
(1/2π)e−(x

2+y2)/2dydx,

so that
F ′(t) =

∫ ∞
−∞

xe−(1+t2)x2/2dx = −(1/(1 + t2))e−(1+t2)x2/2|∞−∞ = 0− 0 = 0.

What is going on? Why are we finding a density of zero? You can see geometrically that the
calculation of the derivative makes sense. Again, because of circular symmetry of the distribution,
the integral of the density over the region lying under any line through the origin will remain 1/2,
regardless of the slope. Thus, differentiating F (t) in t should give us zero.
You see, the point is that the the region of integration was incorrect for silly reasons. The inequality
X/Y ≤ t is equivalent to Y ≤ tX when X is positive. But when X is negative, the inequality
becomes Y ≥ tX. Hence, the region we integrate over should lie below the line y = tx in any region
where X is non-negative, but lies above the line when X is negative. Written as an equation

P (Y/X ≤ t) = P (Y ≤ tX | X > 0) + P (Y ≥ tX | X < 0).

In fact, it is easy then to work out that the correct integral is

F (t) = 2

∫ ∞
0

∫ tx

−∞
(1/2π)e−(x

2+y2)/2dydx,

whose derivative then gives the correct density.
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