Remarks on Linear Algebra II, Sheet 1, Hilary Term, 2012

First some notation:

-For a cycle γ , denote by $l(\gamma)$ its length. Note that

$$l(\gamma) = |\operatorname{Supp}(\gamma)|.$$

-For a permutation ρ , denote by $c(\rho)$ the number of distinct cycles in a cycle decomposition of ρ . Here, when we refer to a cycle decomposition, we include the cycles of length one. Thus, for example, in Sym(4), a cycle decomposition of (12) is

$$(12) = (12)(3)(4).$$

Note that since the cycles in a cycle decomposition have disjoint supports, one can change the order of the cycles that occur.

Problem 7 (i) asks the following: Given a permutation $\rho \in \text{Sym}(n)$ with cycle decomposition

$$\rho = \gamma_1 \gamma_2 \cdots \gamma_k,$$

define the *index* of ρ by

$$\operatorname{Ind}(\rho) = \sum_{i} [l(\gamma_i) - 1].$$

Using the fact that

$$(a_1a_2\cdots a_s) = (a_1a_2)(a_1a_3)\cdots (a_1a_s),$$

(which involves s - 1 transpositions) we see right away that ρ can be written as a product of $\operatorname{Ind}(\rho)$ transpositions. But we are aksed to show that $\operatorname{Ind}(\rho)$ is the *minimum* m such that ρ can be written as a product of m transpositions. This fact is rather tricky even for a single cycle γ . It's clear that γ can be broken into $l(\gamma) - 1$ transpositions. How do we know there is no shorter expression? Here is another form of the statement we wish to prove:

If

$$\rho = \tau_1 \tau_2 \cdots \tau_m \quad (*)$$

for transpositions τ_i , then $m \ge \text{Ind}(\rho)$.

In this form, one can attempt an induction on m. In any case, the assertion concerns a rather subtle relation between the two standard ways of decomposing a permutation, in terms of disjoint cycles, and in term of transpositions.

At this point, before we proceed with the induction, let us write down one other convenient expression for the index. When

$$\rho = \gamma_1 \gamma_2 \cdots \gamma_k$$

is a cycle decomposition, we know that $\sum_i l(\gamma_i) = n$. So

$$\operatorname{Ind}(\rho) = n - k = n - c(\rho),$$

and the assertion we wish to prove for any m as in (*) is

$$m \ge n - c(\rho).$$

Let m = 1, so that ρ is a single transposition. Then $\operatorname{Ind}(\rho) = 1$, so clearly, $m \ge \operatorname{Ind}(\rho)$. Now assume the statement true for some $m \ge 1$ and let

$$\rho = \tau_1 \cdots \tau_{m+1}.$$

Then

$$\rho = \sigma \tau_{m+1}$$

where

 $\sigma=\tau_1\cdots\tau_m.$

Let

$$\sigma = \gamma_1 \cdots \gamma_k$$

be a cycle decomposition of σ . We are assuming that

$$m \ge n-k.$$

We have

$$\rho = \gamma_1 \cdots \gamma_k \tau_{m+1}.$$

We will use this expression to give a lower bound for $c(\rho)$. We consider the two possibilities for the interaction between the support of τ_{m+1} and that of the γ_i . We might have

$$\operatorname{Supp}(\tau_{m+1}) \subset \operatorname{Supp}(\gamma_i)$$

for some j. In this case, since the γ_i commute with each, we may as well assume that

$$\operatorname{Supp}(\tau_{m+1}) \subset \operatorname{Supp}(\gamma_k)$$

Write

 $\rho = (\gamma_1 \cdots \gamma_{k-1})(\gamma_k \tau_{m+1})$

and

 $\gamma_k \tau_{m+1} = c_1 \cdots c_t$

for the cycle decomposition of $\gamma_k \tau_{m+1}$. Then

$$\operatorname{Supp}(c_i) \subset \operatorname{Supp}(\gamma_k \tau_{m+1}) = \operatorname{Supp}(\gamma_k).$$

So the support of the c_i are disjoint from $\text{Supp}(\gamma_i)$ for i < k. Therefore,

 $\rho = \gamma_1 \cdots \gamma_{k-1} c_1 \cdots c_t$

is a cycle decomposition of ρ and $c(\rho) \ge k$.

Now suppose $\operatorname{Supp}(\tau_{m+1})$ meets the support of two of the γ_i . Once again, by commuting them through to the end, we can assume they are γ_{k-1} and γ_k . So we have

$$\rho = \gamma_1 \cdots \gamma_{k-2} (\gamma_{k-1} \gamma_k \tau_{m+1})$$

By the same argument as in the previous paragraph, we then see that

$$c(\rho) \ge k - 1.$$

Therefore, in either case,

$$n - c(\rho) \le n - k + 1 \le m + 1,$$

and we are done.

Exercise: Write down an explicit form of a cycle decomposition for $\gamma_k \tau_{m+1}$ and $\gamma_{k-1} \gamma_k \tau_{m+1}$ in the two cases towards the end of the proof above.