Remarks on Linear Algebra II, Sheet 1, Hilary Term, 2012

First some notation:
-For a cycle γ, denote by $l(\gamma)$ its length. Note that

$$
l(\gamma)=|\operatorname{Supp}(\gamma)|
$$

-For a permutation ρ, denote by $c(\rho)$ the number of distinct cycles in a cycle decomposition of ρ. Here, when we refer to a cycle decomposition, we include the cycles of length one. Thus, for example, in $\operatorname{Sym}(4)$, a cycle decomposition of (12) is

$$
(12)=(12)(3)(4)
$$

Note that since the cycles in a cycle decomposition have disjoint supports, one can change the order of the cycles that occur.

Problem 7 (i) asks the following: Given a permutation $\rho \in \operatorname{Sym}(n)$ with cycle decomposition

$$
\rho=\gamma_{1} \gamma_{2} \cdots \gamma_{k}
$$

define the index of ρ by

$$
\operatorname{Ind}(\rho)=\sum_{i}\left[l\left(\gamma_{i}\right)-1\right]
$$

Using the fact that

$$
\left(a_{1} a_{2} \cdots a_{s}\right)=\left(a_{1} a_{2}\right)\left(a_{1} a_{3}\right) \cdots\left(a_{1} a_{s}\right),
$$

(which involves $s-1$ transpositions) we see right away that ρ can be written as a product of $\operatorname{Ind}(\rho)$ transpositions. But we are aksed to show that $\operatorname{Ind}(\rho)$ is the minimum m such that ρ can be written as a product of m transpositions. This fact is rather tricky even for a single cycle γ. It's clear that γ can be broken into $l(\gamma)-1$ transpositions. How do we know there is no shorter expression? Here is another form of the statement we wish to prove:

If

$$
\rho=\tau_{1} \tau_{2} \cdots \tau_{m} \quad(*)
$$

for transpositions τ_{i}, then $m \geq \operatorname{Ind}(\rho)$.
In this form, one can attempt an induction on m. In any case, the assertion concerns a rather subtle relation between the two standard ways of decomposiing a permutation, in terms of disjoint cycles, and in term of transpositions.
At this point, before we proceed with the induction, let us write down one other convenient expression for the index. When

$$
\rho=\gamma_{1} \gamma_{2} \cdots \gamma_{k}
$$

is a cycle decomposition, we know that $\sum_{i} l\left(\gamma_{i}\right)=n$. So

$$
\operatorname{Ind}(\rho)=n-k=n-c(\rho)
$$

and the assertion we wish to prove for any m as in $(*)$ is

$$
m \geq n-c(\rho)
$$

Let $m=1$, so that ρ is a single transposition. Then $\operatorname{Ind}(\rho)=1$, so clearly, $m \geq \operatorname{Ind}(\rho)$. Now assume the statement true for some $m \geq 1$ and let

$$
\rho=\tau_{1} \cdots \tau_{m+1}
$$

Then

$$
\rho=\sigma \tau_{m+1}
$$

where

$$
\sigma=\tau_{1} \cdots \tau_{m}
$$

Let

$$
\sigma=\gamma_{1} \cdots \gamma_{k}
$$

be a cycle decomposition of σ. We are assuming that

$$
m \geq n-k
$$

We have

$$
\rho=\gamma_{1} \cdots \gamma_{k} \tau_{m+1}
$$

We will use this expression to give a lower bound for $c(\rho)$. We consider the two possibilities for the interaction between the support of τ_{m+1} and that of the γ_{i}. We might have

$$
\operatorname{Supp}\left(\tau_{m+1}\right) \subset \operatorname{Supp}\left(\gamma_{j}\right)
$$

for some j. In this case, since the γ_{i} commute with each, we may as well assume that

$$
\operatorname{Supp}\left(\tau_{m+1}\right) \subset \operatorname{Supp}\left(\gamma_{k}\right)
$$

Write

$$
\rho=\left(\gamma_{1} \cdots \gamma_{k-1}\right)\left(\gamma_{k} \tau_{m+1}\right)
$$

and

$$
\gamma_{k} \tau_{m+1}=c_{1} \cdots c_{t}
$$

for the cycle decomposition of $\gamma_{k} \tau_{m+1}$. Then

$$
\operatorname{Supp}\left(c_{i}\right) \subset \operatorname{Supp}\left(\gamma_{k} \tau_{m+1}\right)=\operatorname{Supp}\left(\gamma_{k}\right)
$$

So the support of the c_{i} are disjoint from $\operatorname{Supp}\left(\gamma_{i}\right)$ for $i<k$. Therefore,

$$
\rho=\gamma_{1} \cdots \gamma_{k-1} c_{1} \cdots c_{t}
$$

is a cycle decomposition of ρ and $c(\rho) \geq k$.
Now suppose $\operatorname{Supp}\left(\tau_{m+1}\right)$ meets the support of two of the γ_{i}. Once again, by commuting them through to the end, we can assume they are γ_{k-1} and γ_{k}. So we have

$$
\rho=\gamma_{1} \cdots \gamma_{k-2}\left(\gamma_{k-1} \gamma_{k} \tau_{m+1}\right) .
$$

By the same argument as in the previous paragraph, we then see that

$$
c(\rho) \geq k-1
$$

Therefore, in either case,

$$
n-c(\rho) \leq n-k+1 \leq m+1,
$$

and we are done.
Exercise: Write down an explicit form of a cycle decomposition for $\gamma_{k} \tau_{m+1}$ and $\gamma_{k-1} \gamma_{k} \tau_{m+1}$ in the two cases towards the end of the proof above.

