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Given a field F , we denote by Aut(F ) the group of field automorphisms of F . Recall that an
algebraic number field is a finite extension of Q.

We wish to prove

For most algebraic number fields F , we have

Aut(F ) = {1}.

The statement here is not precise, and we will not bother to make it so. However, recall that any
algebraic number field F has a primitive element α, so that F = Q(α). If f(x) ∈ Q[x] is the
irreducible polynomial of α, then

F ' Q[x]/(f(x)).

For any polynomial f , denote by Q(f) the splitting field of f and

Gf := Gal(Q(f)/Q) = Aut(Q(f)).

(We will diverge here a bit from the notation in the textbook, and write Gal(K/F ) for the field
automorphisms of K that act trivially on F .) What we will actually show is this:

Proposition 0.1. Let f ∈ Q[x] be a polynomial of degree n ≥ 3. Suppose Gf ' Sn. Then
Aut(Q[x]/(f(x))) = {1}.

It is a fact, which we will not prove here, that f satisfying Gf ' Sn is of density 1 among all
polynomials of degree n, giving a precise mathematical interpretation of the original statement.

Lemma 0.2. Let K/F be a Galois extension and suppose K ′ is an extension field of K (and hence,
of F ). Then for any embedding

τ : K↪→K ′,
we have τ(K) = K.

That is, any embedding τ is induces an automorphism of K. Notice that for a field like Q(21/3) ⊂ C,
there is an embedding

τ : Q(21/3)↪→C
that takes 21/3 to ζ321/3. This embedding will have an image different from Q(21/3). This of course
is because Q(21/3)/Q is not Galois. For K ⊂ C that is a Galois extension of Q, the lemma says that
any complex embedding will have the same image K. The proof of the lemma is easy and details are
left to the reader. The idea is that K = F (α) for a primitive element α with irreducible polynomial
f(x) ∈ F [x]. Then any embedding τ will have to take α to a root of f(x). But since K/F is Galois,
all the roots of f are in K.

Lemma 0.3. Let K/F be Galois and let L be an intermediate field: F ⊂ L ⊂ K. Then any
automorphism σ ∈ Gal(L/F ) extends to an automorphism

τ ∈ Gal(K/F ).

Proof. We have K = L(α) for an element α with irreducible polynomial f(x) ∈ L[x]. Write
σ(f) ∈ L[x] for the polynomial obtained by applying σ to the coefficients of f . Let K ′ ⊃ K be an
extension field in which σ(f) has a root β. Then we have an isomorphism

τ : K ' L[x]/(f(x)) ' L[x]/(σ(f(x)) ' L(β) ⊂ K ′.

By the previous lemma, τ(K) = K, so τ gives rise to an automorphism of K. The second
isomorphism restricts to σ on L while the others are the identity on L, so τ extends σ.

1



Lemma 0.4. Let K/F be Galois and let L be an intermediate field: F ⊂ L ⊂ K. Let
H = Gal(K/L) so that L is the fixed field of H. Then there is an isomorphism

N(H)/H ' Gal(L/F ),

where N(H) denotes the normalizer of H inside Gal(K/F ).

Of course, when H < Gal(K/F ) is normal, this becomes the statement:

Gal(K/F )/Gal(K/L) ' Gal(L/F )

proved in an earlier lecture.

Proof. First, let τ ∈ N(H). Then for any x ∈ L and h ∈ H, we have

hτ(x) = τ(τ−1hτ)x = τx

since τ−1hτ ∈ H. So τ(x) is fixed by all elements of H. Hence, τ(x) ∈ L. Therefore, the restriction

τ 7→ τ |L

induces a homomorphism N(H)→Gal(L/F ), whose kernel is exactly H. Thus, we have an injection

N(H)/H↪→Gal(L/F ).

On the other hand, any σ ∈ Gal(L/F ) extends to an automorphism τ of K. For this extension, we
have τ(L) = L, so τ−1(L) = τ−1(τ(L)) = L. Thus, for any h ∈ H and x ∈ L, we have τ−1(x) ∈ L, so
that

τhτ−1(x) = ττ−1(x) = x.

That is, τhτ−1 ∈ H, whereby τ ∈ N(H). Therefore, the restriction map N(H)→Gal(L/F ) is
surjective, giving us the desired isomorphism

N(H)/H ' Gal(L/F ).

Given H, it could very well be that N(H) is not much bigger than H, so that N(H)/H is quite
small. It turns out our proposition is concerned exactly with a situation of this sort.

Proof of proposition. Let Q(f) ⊂ C be the splitting field of f , so that

Q(f) = Q(α1, α2, . . . , αn),

where the αi are the distinct roots of f . Then

Q[x]/(f(x)) ' Q(αn),

so we need only prove that Aut(Q(αn)) = {1}. If we use the given ordering of the roots to idenitfy
Gf with Sn, then we can ask for the subgroup corresponding to the subfield

Q(αn) ⊂ Q(α1, α2, . . . , αn).

These are the automorphisms that fix αn, and hence, can exactly be identified with Sn−1 ⊂ Sn.
Therefore, we have

Aut(Q(αn)) ' N(Sn−1)/Sn−1,

where the normalizer is taken inside Sn. So the proposition follows from the simple observation that
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If n ≥ 3, then N(Sn−1) = Sn−1.

To see this, let σ ∈ Sn normalize Sn−1, let i ∈ {1, . . . , n− 1}, and j = σ(i). Choose k 6= i in
{1, . . . , n− 1}. (This is possible since n ≥ 3.) Then the transposition (i k) is not the identity. Under
conjugation, we have

σ(i k)σ−1 = (j σ(k)) ∈ Sn−1.

But this implies j ∈ {1, . . . , n− 1}. Therefore, σ stabilizes the set {1, . . . , n− 1}, implying that
σ(n) = n, and hence, σ ∈ Sn−1.
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