
Maximal ideals in Z[x]

A bit of notation and background: Given a polynomial f(x) ∈ Z[x] and a prime p, we denote by
f̄ ∈ Fp[x] the polynomial obtained by reducing the coefficients of f mod p. For example, if
f(x) = 100x3 + 3x2 + 5x− 1 and p = 3, then f̄ = x3 + 2x+ 2.

We will also review a version of the Gauss Lemma. This is not strictly necessary for our discussion,
but is convenient. We call a polynomial in Z[x] primitive if its coefficients are relatively prime. Note
that any non-zero polynomial f(x) ∈ Q[x] has a constant multiple cf(x) ∈ Z[x] which is primitive.

Lemma 0.1. If f, g ∈ Z[x] are both primitive, then fg is also primitive.

Proof. Suppose p is a prime dividing the coefficients of fg. Then reducing mod p, we would have
f̄ ḡ = 0 in Fp[x]. But Fp[x] is an integral domain, so this implies f̄ = 0 or ḡ = 0. Hence, p must
divide all coefficients of f or of g, contradicting primitivity.

Corollary 0.2. Suppose 0 6= a ∈ Z[x] is a multiple in Q[x] of the primitive polynomial g ∈ Z[x].
Then a is a multiple of g in Z[x].

Proof. We are assuming that a = fg with f ∈ Q[x]. Write f = cf1, where f1 ∈ Z[x] is primitive and
c ∈ Q∗. So a = cf1g. Since a ∈ Z[x], we know that cbi ∈ Z for every coefficient bi of f1g. But by the
previous lemma, we know that the bi are relatively prime. So we can find integers ni such that∑

i nibi = 1. This implies that c = c(
∑

i nibi) =
∑

i ni(cbi) is an integer. So f ∈ Z[x].

Corollary 0.3. Suppose f(x) ∈ Z[x] is a primitive polynomial and denote by f(x)Q[x] the ideal it
generates in Q[x]. Then [f(x)Q[x]] ∩ Z[x] = f(x)Z[x], the ideal generated by f(x) in Z[x].

Of course, we are denoting the ideal generated by a polynomial in a slightly cumbersome manner in
the previously corollary to avoid confusion about the ring in which the ideal sits.

Proposition 0.4. Let M ⊂ Z[x] be a maximal ideal. Then M is of the form

M = (p, f(x)) (0.1)

where f ∈ Z[x] is a polynomial such that f̄(x) ∈ Fp[x] is irreducible.

To put it differently, to generate a maximal ideal in Z[x], we should choose a prime p and an
irreducible polynomial f0 ∈ Fp[x]. We then lift f0 any way we want to a polynomial f ∈ Z[x], that
is, so that f̄ = f0. Then (p, f) ⊂ Z[x] is a maximal ideal, and all maximal ideals are obtained in this
way. By the way, you should check that the ideal is independent of the choice of lift f .
Here are some examples:

(2, x2 + x+ 1) = (2, x2 + 3x− 1) (0.2)
(3, x3 + x2 + 2) (0.3)

(5, x2 − 3) (0.4)
We now proceed to prove the proposition. Firstly, given p and f as in the proposition, we have

Z[x]/(p, f(x)) = Fp[x]/(f̄(x)).

The second quotient ring is a field since f̄ is assumed irreducible. So (p, f(x)) is a maximal ideal.
Now assume that M ⊂ Z[x] is an arbitrary maximal ideal and denote by k the quotient ring Z[x]/M ,
which of course is a field. Consider the composition

φ : Z→k := Z[x]/M (0.5)

of the two natural maps
i : Z↪→Z[x] (0.6)

and
π : Z[x]→k. (0.7)

1



Lemma 0.5. The map φ is not injective.

Proof. (of Lemma) Suppose φ were injective. Then, since k is a field, φ would extend to an injection
Φ : Q↪→k. By sending x to the element π(x), we see therefore that the natural projection π also
extends to a homomorphism Π : Q[x]→k:

Z[x]
π - k

Q[x]
?

Π

-

The map Π is clearly surjective, since π already is. Now, if Π were injective, we would have an
isomorphism Q[x] ' k, which we can’t because Q[x] is not a field. Therefore, Ker(Π) = (g(x)) for a
non-zero polynomial g, which must then be irreducible. By replacing g with a non-zero constant
multiple, we can assume that g is a primitive polynomial in Z[x]. We thus have an isomorphism

Q[x]/(g) ' k.

But this would imply that the natural map Z[x]↪→Q[x] induces a surjection

Z[x]→Q[x]/(g).

By corollary (0.3), this would induce an isomoprhism

Z[x]/(g) ' Q[x]/(g).

It should be plausible that this is a contradiction, as we will now go on to show. Write

g(x) = anx
n + an−1x

n−1 + · · · a1x+ a0

with an 6= 0. Therefore, in Q[x]/(g) we have

anx̄
n + · · · a1x̄+ a0 = 0.

So we could write
x̄n = (−an−1/an)x̄n−1 + · · ·+ (−a1/an)x̄+ (−a0/an).

That is, x̄n can be written as a linear combination of the lower powers with coefficients in Z[1/an].
Using this and an easy induction, we deduce that any element of Q[x]/(g) can be written as a linear
combination of elements in the set

B = {1, x̄, x̄2, . . . , x̄n−1}

with coefficients in Z[1/an]. However,

B is linearly independent in Q[x]/(g).

This is clear since a linear relation
n−1∑
i=0

cix̄
i = 0

implies
n−1∑
i=0

cix
i ∈ (g(x)).

But then, by examining degrees, we must have ci = 0 for all i. Now take any prime p that doesn’t
divide an. Then 1/p cannot be spanned by B with coefficients in Z[1/an].

2



We return to the proposition. We know now that Ker(φ) = (n) for some n non-zero. However, since
the image of φ is an integral domain n must be a prime p. Therefore, we must have p ∈M for some
prime p. Recall that the maximal ideals in Z[x] that contain p are in bijection with the maximal
ideals in Z[x]/p ' Fp[x]. So M/(p) = (f0(x)) for an irreducible polynomial f0 ∈ Fp[x]. But then
M = (p, f) for any lift f of f0, as was to be shown.
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