
Constructible numbers

Define recursively a set of numbers in the complex plane as follows.

S0 = {0, 1} (0.1)

Sn+1 = Sn ∪An+1 (0.2)

where An+1 consists of all points occurring in the intersection of two distinct lines, two distinct
circles, or a circle and a line constructed from Sn. That is, these circles and lines are subject to the
conditions that
(1) the lines must go through two points in Sn;
(2) and the circles must have centres in Sn and radii the distance between two points in Sn.
As an easy exercise, you should check that

S1 = {0, 1,−1, 2, (1 +
√

3i)/2, (1−
√

3i/2}. (0.3)

Now define
S = ∪∞n=0Sn ⊂ C. (0.4)

It might be useful to have notations also for the set Ln of lines constructed from Sn and the set
Cn of circles constructed from Sn. And then

L = ∪∞n=0Ln (0.5)

and
C = ∪∞n=0Cn. (0.6)

To warm up, let us check

Lemma 0.1. We have S̄n = Sn, where the bar refers to complex conjugation. So S̄ = S.

Proof. This is clearly true for S0. Assume it for Sn. Then L̄n = Ln and C̄n = Cn. So Ān+1 = An+1

and hence, S̄n+1 = Sn+1. This finishes the proof by induction.

We note that the x-axis is in L0, while the y-axis is in L2. By drawing circles centered at the
origin, we see that if the real number x is in Sn, then ix ∈ Sn+1. Similarly, if the purely imaginary
number iy is in Sn, then y ∈ Sn+1. Also, using intersections between the x-axis and suitable circles,
we see that if the real numbers x and y are in Sn, then x ± y ∈ Sn+1. It will be convenient now to
forget the indices and refer to the whole set S, even though it is an interesting exercise to keep track
of the day of creation for any give number, line, or circle. By drawing a circle centered at the origin,
we see that If r is the distance between two points in S, then r ∈ S.

Using three suitable circles, we can construct the vertical line x = a going through any a ∈ S ∩R.
Similarly, we can construct a horizontal line through any iy ∈ S ∩ iR. Combined with the lemma on
complex conjugation, this gives us

Lemma 0.2. We have z ∈ S if and only if Re(z), Im(z) ∈ S.

Proof. Wejhave just explained why Re(z), Im(z) ∈ S implies z ∈ S. It remains only to explain how
to extract the real and imaginary parts from z. But Re(z) is the intersection point between the real
axis and the line connecting z with z̄. Im(z) is the plus or minus the distance from Re(z) to z, which
can then by marked off on the real line with a circle having this radius.

We now apply the addition property for real numbers to see that if z, w ∈ S, then z ± w ∈ S.
Given a real number a ∈ S, by using the points 1 and ia, it is easy to construct the line la of slope a
going through the origin. Similarly, if a 6= 0, by using the points a and i, we can construct the line
l1/a with slope 1/a. But then, by marking off the intersection point of la and the vertical line through
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b ∈ S ∩ R, we see that if a, b ∈ S ∩ R, then ab ∈ S ∩ R. Similarly, if a 6= 0, then b/a ∈ S ∩ R. Since
multipication and division of complex numbers can be expressed entirely in terms of multiplication
and division for the real and imaginary parts, we see that if z, w ∈ S, then zw ∈ S, while if z 6= 0,
then w/z ∈ S. So we have proved:

Proposition 0.3. S is a subfield of C.

In particular, Q ⊂ S.
We wish to describe S in a manner familar to standard field theory. We start by noting the

following key property of S.

Proposition 0.4. Suppose z ∈ S. Then
√
z ∈ S.

Clearly, the statement doesn’t depend on which square root is chosen.

Proof. First we prove this for real non-negative a ∈ S. One way to do this is to recall that the parbola
y = x2 can be described as the locus of points whose distance to the point (0, 1/4) is the same as the
distance to the line y = −1/4. We wish to find the x-coordinate of the intersection point between
this parabola and the line y = a. Unforuntately, we can’t construct the parabola. However, we know
that the distance from any point on the line y = a to the line y = −1/4 is a+ 1/4. So if we draw the
circle of radius a + 1/4 with center at (0, 1/4). Then the intersection points with the line y = a will
be (±

√
a, a). Taking the real part gives us what we want. In general, if z = x+ iy, then there is the

formula
√
z =

√
r + x

2
+ sign(y)

√
r − x

2
i, (0.7)

where r =
√
x2 + y2. (Note that r is very easily constructed from z even without square roots). So√

z can be constructed.

Define a sequence of fields as follows.
F0 = Q. (0.8)

Fn+1 = Fn(
√
Fn). (0.9)

The notation here is that if F is a subfield of C and S ⊂ F , then F (
√
S) is the smallest subsfield of

C containing F and the square roots of elements of S. Thus, if S is countable and we enumerate its
elements as S = {a1, a2, a3, . . . , }, then F (

√
S) is constructed as the union of a tower

F ⊂ F (
√
a1) ⊂ F (

√
a1,
√
a2) ⊂ · · · (0.10)

Now put
F = ∪∞n=0Fn. (0.11)

Since F0 ⊂ S, we see that F ⊂ S.

Proposition 0.5. In fact, F = S.

Proof. First, note by induction on n that Fn is preserved by complex conjugation. (Use the formula
for the complex square root given above.) So F is preserved by complex conjugation. Next, we observe
that

√
F ⊂ F , by construction.

It suffices to show Sn ⊂ F by induction as well. This is true for S0, so assume it for Sn. But Ln
will consist of lines ax+ by = 0 with a, b ∈ F , while Cn will consist of circles

(x− a)2 + (y − b)2 = r2

with a, b, r ∈ F . Considering intersections of any of these will involve solving for x a quadratic equation
ith coefficients in F . The only case that requires a moment’s pause is the intersection of two distinct
circles:

(x− a)2 + (y − b)2 = r2;
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(x− c)2 + (y − d)2 = s2.

For them to intersection, we must have (a, b) 6= (c, d). Subtracting one equation from the other will
give us

2(c− a)x+ 2(d− b)y = r2 − a2 − b2 − s2 + c2 + d2,

which is the equation of the line that passes through the two points. Substituting for x or y back into
the equation of one of the circles shows that the solutions x, y are also in F .

If it was’t evident before, this shows that S is an algebraic extension of Q.
For F , a little thought will reveal that any given element α is contained in a field Kn obtained as

the last term in a finite tower
Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn (0.12)

with Ki+1 = Ki(
√
ai) for some ai ∈ K∗i \ (K∗i )2. Therefore, the same is true of S. In particular, we

have Q(α) ⊂ Kn and hence, [Q(α) : Q] divides [Kn : Q] = 2n.

Proposition 0.6. If α ∈ S, then [Q(α) : Q] = 2r for some r ∈ N.

We will see later that the converse is also true, that is, if [Q(α) : Q] = 2r, then α ∈ S. For now we
deduce one simple consequence.

Proposition 0.7. Given a prime number p > 2, a necessary condition for the constructibility of the
number

ζp := e2πi/p

is that p = 2r + 1 for some r.

Proof. We have
0 = ζpp − 1 = (ζp − 1)(ζp−1p + ζp−2p + · · ·+ ζp + 1)

so
ζp−1p + ζp−2p + · · ·+ ζp + 1 = 0.

That is, ζp is a root of f(x) = xp−1 + xp−2 + · · ·+ x+ 1. On the other hand, f(x) is irreducible. To
see this, we need only show that g(x) = f(x+ 1) is irreducible. But

f(x+ 1) = ((x+ 1)p − 1)/x = xp−1 + pxp−2 +

(
p

2

)
+ · · ·+

(
p

2

)
x+ p.

So it is irreducible by Eisenstein’s criterion.
Therefore, we see that f(x) is the irreducible polynomial of ζp. This implies that [Q(ζp) : Q] = p−1.

Thus, ζp ∈ S only if p− 1 = 2r.

A little geometry will show that ζp is constructible if and only if the regular p-gon can be con-
structed with straightedge and compass. So we see that the regular 7-gon, 11-gon, and 13-gon cannot
be constructed. However, 17− 1 = 24, so the regular 17-gon is a possibility. We will see later that it
can in fact be constructed.

3


