Kazuya Kato

The great arithmetician Kazuya Kato visited twice over the last few weeks, so I thought I’d use the occasion to recommend some writings. An undergraduate level textbook on number theory is

Number Theory I: Fermat’s Dream

published by the American Mathematical Society. It is short and covers fairly standard material, but contains many unusual insights. A research article that represents quite well Kato’s vision of number theory is

Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I

available online if your institution subscribes to Springer. The background required for a genuine reading of the paper is rather extensive, but even without it, you can enjoy the introduction, the first few sections, and the closing remarks.

A main theme of the work is that the somewhat mysterious p-adic zeta functions and L-functions are the objects with direct relevance to the important problems of arithmetic geometry, while the usual complex functions are a sort of intermediary. It took me a long time to come to terms with this view, especially since I still don’t understand these functions (actually elements of some non-commutative algebra of measures) at all well, but it is eventually an essential component of my own thoughts about Diophantine geometry.



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: